Thermodynamic properties of autunite, uranyl hydrogen phosphate, and uranyl orthophosphate from solubility and calorimetric measurements.
نویسندگان
چکیده
In this study, we use solubility and drop-solution calorimetry measurements to determine the thermodynamic properties of the uranyl phosphate phases autunite, uranyl hydrogen phosphate, and uranyl orthophosphate. Conducting the solubility measurements from both supersaturated and undersaturated conditions and under different pH conditions rigorously demonstrates attainment of equilibrium and yields well-constrained solubility product values. We use the solubility data and the calorimetry data, respectively, to calculate standard-state Gibbs free energies of formation and standard-state enthalpies of formation for these uranyl phosphate phases. Combining these results allows us also to calculate the standard-state entropy of formation for each mineral phase. The results from this study are part of a combined effort to develop reliable and internally consistent thermodynamic data for environmentally relevant uranyl minerals. Data such as these are required to optimize and quantitatively assess the effect of phosphate amendment remediation technologies for uranium contaminated systems.
منابع مشابه
Response of Hanford Site Soil Arthrobacter Isolates to Uranium Contamination
Uranium is one of the most prevalent radiological groundwater and soil contaminants at Hanford, the U.S. Department of Energy (DOE) site, Washington State, USA. Bioremediation strategies, such as injections of a soluble sodium tripolyphosphate amendment into the contaminated groundwater in order to sequester uranium through the formation of insoluble uranyl phosphate minerals, may have resulted...
متن کاملFate of uranyl in a quaternary system composed of uranyl, citrate, goethite, and Pseudomonas fluorescens.
This study investigated the partitioning of uranyl within a quaternary system made up of uranyl, citrate, goethite, and the bacterium Pseudomonas fluorescens. In the absence of cells, uranyl was sorbed to goethite as a complex involving surface groups and/or citrate. Measurements of the evolution of CO2 indicated that the addition of bacterial cells lead to the gradual biodegradation of citrate...
متن کاملThermodynamic Properties of Uranyl Minerals: Constraints from Calorimetry and Solubility Measurements
More than 50 uranyl minerals, phases containing U as the uranyl UO2 2+ cation, and hydroxide, carbonate, phosphate, and silicate anions, H2O, and alkali and alkaline earth cations, occur in nature and as corrosion products of spent nuclear fuel. Despite their importance and the need to understand their thermodynamics to predict uranium solubility, fate, and transport in the environment, reliabl...
متن کاملDecrease of U(VI) Immobilization Capability of the Facultative Anaerobic Strain Paenibacillus sp. JG-TB8 under Anoxic Conditions Due to Strongly Reduced Phosphatase Activity
Interactions of a facultative anaerobic bacterial isolate named Paenibacillus sp. JG-TB8 with U(VI) were studied under oxic and anoxic conditions in order to assess the influence of the oxygen-dependent cell metabolism on microbial uranium mobilization and immobilization. We demonstrated that aerobically and anaerobically grown cells of Paenibacillus sp. JG-TB8 accumulate uranium from aqueous s...
متن کاملEvidence for multiple modes of uranium immobilization by ananaerobic bacterium
Microbial reduction of hexavalent uranium has been studied widely for its potential role in bioremediation and immobilization of soluble U(VI) in contaminated groundwater. More recently, some microorganisms have been examined for their role in immobilization ofU(VI) via precipitation of uranyl phosphatemineralsmediated bymicrobial phosphate release, alleviating the requirement for long-term red...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 43 19 شماره
صفحات -
تاریخ انتشار 2009